Can the Monomer of the Leucine Zipper Proteins Recognize the Dimer Binding Site without Dimerization?
نویسندگان
چکیده
It is generally believed that leucine zipper regulatory proteins for DNA transcription recognize their DNA binding sites as dimers preformed in solution (and that the monomers do not bind specifically to these sites). To test this idea, we synthesized the 31-residue peptide v-Jun-br, which contains only the DNA binding region of the v-Jun monomer. Footprinting assays show that v-Jun-br monomers specifically protect the DNA binding site of V-Jun in almost identically the same way as dimers. Thus, (i) the monomer recognizes the half-site of the dimer binding site and (ii) dimerization does not appreciably affect the bound conformation of each monomer. These results may have implications in the regulation of transcription by such proteins. Thus, two monomers of v-Jun might bind sequentially to the dimer binding site followed by dimerization of v-Jun while bound. This may allow binding at concentrations too low for dimerization in solution.
منابع مشابه
The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex.
The yeast transcriptional activator GCN4 is 1 of over 30 identified eukaryotic proteins containing the basic region leucine zipper (bZIP) DNA-binding motif. We have determined the crystal structure of the GCN4 bZIP element complexed with DNA at 2.9 A resolution. The bZIP dimer is a pair of continuous alpha helices that form a parallel coiled coil over their carboxy-terminal 30 residues and grad...
متن کاملNumerical study of the entropy loss of dimerization and the folding thermodynamics of the GCN4 leucine zipper.
A lattice-based model of a protein and the Monte Carlo simulation method are used to calculate the entropy loss of dimerization of the GCN4 leucine zipper. In the representation used, a protein is a sequence of interaction centers arranged on a cubic lattice, with effective interaction potentials that are both of physical and statistical nature. The Monte Carlo simulation method is then used to...
متن کاملBacteriophage Mu C protein is a new member of unusual leucine zipper-HTH class of proteins.
Transcription activator protein C of bacteriophage Mu activates transcription of the late genes, including mom, during the lytic cycle of the phage. C binding to its site leads to the alteration in DNA topology of the promoter elements resulting in RNA polymerase (RNAP) recruitment. At the next step, the transactivator enhances promoter clearance of RNAP from P(mom). The C protein binds DNA wit...
متن کاملMethod for predicting the state of association of discretized protein models. Application to leucine zippers.
A method that employs a transfer matrix treatment combined with Monte Carlo sampling has been used to calculate the configurational free energies of folded and unfolded states of lattice models of proteins. The method is successfully applied to study the monomer-dimer equilibria in various coiled coils. For the short coiled coils, GCN4 leucine zipper, and its fragments, Fos and Jun, very good a...
متن کاملAn intrahelical salt bridge within the trigger site stabilizes the GCN4 leucine zipper.
We previously reported that a helical trigger segment within the GCN4 leucine zipper monomer is indispensable for the formation of its parallel two-stranded coiled coil. Here, we demonstrate that the intrinsic secondary structure of the trigger site is largely stabilized by an intrahelical salt bridge. Removal of this surface salt bridge by a single amino acid mutation induced only minor change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997